

 Objectives of organizations decisions frequently involve maximizing profit/surplus or minimizing costs.

Linear Programming: An Overview

• Linear programming uses **linear algebraic relationships** to represent a firm's decisions, given a business **objective**, and resource **constraints**.

Steps in Developing a Linear Programming (LP) Model

- 1) Formulation
- 2) Solution
- 3) Interpretation and Sensitivity Analysis

Properties of LP Models

- 1) Seek to minimize or maximize
- 2) Include "constraints" or limitations
- 3) There must be alternatives available
- 4) All equations are linear

Example LP Model Formulation: The Product Mix Problem

Decision: How much to make of \geq 2 products?

Objective: Maximize profit

Constraints: Limited resources

Basic Assumptions of LP

- We assume conditions of *certainty* exist and numbers in the objective and constraints are known with certainty and do not change during the period being studied
- We assume *proportionality* exists in the objective and constraints
- We assume *additivity* in that the total of all activities equals the sum of the individual activities
- We assume *divisibility* in that solutions need not be whole numbers
- All answers or variables are *nonnegative*

Flair Furniture Co. Data								
		Tables	Chairs					
		(per table)	(per chair)					
	Profit Contribution	\$7	\$5	Hours Available				
	Carpentry	3 hrs	4 hrs	2400				
	Painting	2 hrs	1 hr	1000				

Make no more than 450 chairsMake at least 100 tables

_			
_			
-			
-			
_			
-			

Decision Variables:

Other Limitations:

T = Num. of tables to make

C = Num. of chairs to make

Objective Function: Maximize Profit Maximize \$7 T + \$5 C

• Have 2400 hours of carpentry time available $3 T + 4 C \le 2400$ (hours)

• Have 1000 hours of painting time available

 $2 T + 1 C \leq 1000 \text{ (hours)}$

More Constraints:• Make no more than 450 chairs $C \leq 450$ (num. chairs)• Make at least 100 tables $T \geq 100$ (num. tables)Nonnegativity:
Cannot make a negative number of chairs or tables
 $T \geq 0$

 $C \ge 0$

