Greenhouse gases and Global Warming | Green
House
Gases | | CO ₂ | CH₄ | N ₂ O | CFC | O ₃ | SF ₆ | SF₅CF₃ | |---|------------------|---|--|---|---|---|--------------------------|----------------------| | Concentration
2008 | | 379 ppm | 1.8 ppm | 320 ppb | 900 ppt
(CF ₂ Cl ₂ -
500ppt) | 34 ppb | 5.6 ppt | 0.12 ppt | | Concentration
1750 | | 280 ppm | 0.7 ppm | 270 ppb | 0 | 25 ppb | 0 | 0 | | Current
Annual
Growth Rate | | 0.4% or
1.8 ppm | 1% | 0.2% | 1% | Varies
with region
& altitude | 7% | 6% | | Radiative
Forcing
(W/m2) | | 1.66 | 0.48 | 0.16 | 0.27 | 0.30
(+0.35-
0.05) | 2.9×
10 ⁻³ | 7.2×10 ⁻⁵ | | Life time or
Residence
time,
years | | 50-200 | 12 | 120 | 45-1700 | Days-
Weeks | 3,200 | 800 | | Global
Warming
Potential | | 1 | 25 | 298 | 11,000
(6,130-
14,400) | | 22,800 | 17,700 | | Greenhouse Effect
Contribution % | Without
Ozone | 63 | 18 | 6 | 10 | | 0.1 | 0.003 | | | With
Ozone | 57 | 16 | 5 | 9 | 10 | 0.1 | 0.003 | | Sources | | Fossil fuels,
deforestatio
n, organic
decay,
volcanoes,
forest fires | Wet lands,
rice,
livestock,
fossil fuels,
anaerobic
bacteria,
fermites | Natural: Nitrification, denitrificatio n Anthropogen ic: Fossil fuels, fertilizers, deforestation | Aerosols, Air
Conditioning,
Refrigeration
, Aerosols,
Foam
Blowing,
Solvents, Cle
aning agents | Troposphere:
Fossil fuels
Stratosphere:
Ultraviolet
Radiation | Dielectric
Insulator | | Source: Tuckett, Richard P. in Letcher, Trevor M. (Editor) (2009), p. 10-11 ## Software and Data Tables The data tables used in the development of the framework are available as an Excel file in the CD attached to this dissertation. The apportionment software is also available in the CD which can be run by typing 'Control r' after opening the Excel File. The program attempts to find the values of the mitigation coefficients with non-negativity constraints by an iteration procedure. For the iteration to converge, the target parameters given should be realistic, as otherwise a message is displayed accordingly. Moreover, for quick convergence of the cumulative gamma mitigation option, the following procedure may be adopted: (i) First run the program with parabolic mitigation option. Note the cumulative emission reduction achieved during the mitigation period in Giga tons of carbon. (ii) Now run the program for cumulative gamma mitigation and for the querry, viz., 'Enter the value of Minimum cumulative reduction target', give a value equal to the value obtained in parabolic mitigation -10.